

Tin Brdnik

Flow Science Deutschland

Topic

Enhancing Process Control Using Laser Beam Shaping: Insights from Numerical Modeling

Directed energy deposition (DED) is an additive manufacturing process and an effective method to repair parts in aerospace and other industries. In this study, DED equipped with a heating component and an inert gas shield system, which mitigates the effect of cracks or oxidation, was applied to TiAl adopted in turbine blades for commercial engines. A unique γ -based microstructure was obtained by the present DED. The tensile and creep properties were also investigated.

About the Speaker

2017 - 2018: Metallurgy laboratory, welding workshop, structural and thermal analysis in MATLAB; Internship at UNIOR d.d. in Zrece

2019 - 2020: Managed production fleet of 15 industrial 3D printers; Bachelor's thesis: Metal filament printing (BASF); Fleet operations Manager at BigRep GmbH in Berlin

2020 - 2022: Managing laboratory for 3D printing: DMLM, SLA, DLP, FDM; Production of metallic lattice structures, FEM simulation; Scientific Assistant at RWTH University in Aachen

2022 - 2023: CFD Laser welding simulation, machine learning for process optimization; Master thesis project at Mercedes Benz AG in Stuttgart

2023 - today: Software development, automation, optimization, customer support, sales, marketing; Application engineer at Flow Science Deutschland